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Abstract. To reach a truly broad level of program understanding, static
analysis techniques need to create an abstraction of memory that covers
all possible executions. Such abstract models may quickly degenerate af-
ter losing essential structural information about the memory objects they
describe, due to the use of specific programming idioms and language fea-
tures, or because of practical analysis limitations. In many cases, some
of the lost memory structure may be retrieved, though it requires com-
plex inference that takes advantage of indirect uses of types. Such re-
covered structural information may, then, greatly benefit static analysis.
This dissertation shows how we can recover structural information, first
(i) in the context of C/C++, and next, in the context of higher-level
languages without direct memory access, like Java, where we identify
two primary causes of losing memory structure: (ii) the use of reflection,
and (iii) analysis of partial programs. We show that, in all cases, the
recovered structural information greatly benefits static analysis on the
program.
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1 Introduction

The most promising and powerful of existing static analysis techniques rely on
the creation of some abstract memory model of the program. What objects will
the memory contain, at some state of execution? What will their structure be
like? A faithful abstract representation of the actual memory is, however, a
demanding task; its precision often decisive for the value of whatever the static
analysis is aiming to eventually compute (be it the identification of complex bug
patterns or the opportunities for effective optimizations).

Thesis.

There is implicit structural information in the program, about the mem-
ory it will allocate, that can improve the quality of the abstract memory
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model constructed by static analysis. This structural information is not
readily available, but may be recovered via inference, primarily by track-
ing the use of types in the program.

We provide a number of techniques that recover such lost memory structure,
in two different settings: (1) in C/C++ programs, as a typical case of low-level
code with direct memory access, where the program’s memory structure is often
lost due to specific programming idioms and the inherent low-level nature of
the language, and (2) in Java programs, where, despite the high-level nature
of the language, structural information may be lost (a) for partial programs
(i.e., libraries or any programs that lack some of their parts), which, in the
form of Java Archives (JARs), constitute the main distributable code entity of
this managed language, or (b) due to Java’s reflection mechanism, which allows
runtime inspection of classes, interfaces, fields and methods, and can be used to
instantiate new objects, invoke methods, get/set field values, and so on, without
exact static type information (e.g., the name of the method to be invoked can
be created dynamically using plain string operations).

2 Structure-Sensitive Points-To Analysis for C and C++

Points-to analysis computes an abstract model of the memory that is used to
answer the following query: What can a pointer variable point-to, i.e., what can
its value be when dereferenced during program execution? This query serves as
the cornerstone of many other static analyses aiming to enhance program un-
derstanding or assist in bug discovery (e.g., deadlock detection), by computing
higher-level relations that derive from the computed points-to sets. In the lit-
erature, one can find a multitude of points-to analyses with varying degrees of
precision and speed.

One of the most popular families of pointer analysis algorithms, inclusion-
based analyses (or Andersen-style analyses [3]), originally targeted the C lan-
guage, but has been extended over time and successfully applied to higher-level
object-oriented languages, such as Java [6,7,21,25,29]. Surprisingly, precision-
enhancing features that are common practice in the analysis of Java programs,
such as field sensitivity or online call-graph construction are absent in many
analyses of C/C++ [12,15,30,14,8,13].

In the case of field sensitivity, the reason behind its frequent omission when
analyzing C is that it is much harder to implement correctly than in Java. As
noted by Pearce et al. [24], the crucial difference is that, in C/C++, it is possible
to have the address of a field taken, stored to some pointer, and then dereferenced
later, at an arbitrarily distant program point. In contrast, Java does not permit
taking the address of a field; one can only load or store to some field directly.
Hence, load/store instructions in Java bytecode (or any equivalent IR) need
an extra field specifier, whereas in C/C++ intermediate representations (e.g.,
LLVM bitcode) load/store requires only a single address operand. The precise
field affected is not explicit, but only possibly computed by the analysis itself.



The effect of such difference in the underlying IRs, as far as pointer analysis
is concerned, is far from trivial. In C, the computed points-to sets have an
expanded domain, since now the analysis must be able to express that a variable
p at some offset i may point-to another variable q at some offset j, with these
offsets corresponding to either field components or array elements.

The best-documented approach on how to incorporate field sensitivity in a
C/C++ points-to analysis is that of Pearce et al. [23,24]. The authors extend
the constraint-graph of the analysis by adding (positive) weights to edges; the
weights correspond to the respective field indices. For instance, the instruction
“q = &(p->fi)” would be encoded as a constraint q ⊇ p + i. However, this
approach does not take types into account. In fact, types are not even statically
available at all allocation sites, since most standard C allocation routines are
type-agnostic and return byte arrays that are cast to the correct type at a later
point (e.g., malloc(), realloc(), calloc()). Thus, field i is represented with
no regard to the type of its base object, even when this base object abstracts a
number of concrete objects of different types. The lack of type information for
abstract objects is a great source of imprecision, since it results in a prohibitive
number of spurious points-to inferences.

We argue that type information is an essential part in increasing analysis
precision, even when it is not readily available. The abstract object types should
be rigorously recorded in all cases, especially when indexing fields, and used to
filter the points-to sets. In this spirit, we present a structure-sensitive analysis
for C/C++ that employs a number of techniques in this direction, aiming to
retrieve high-level structure information for abstract objects in order to increase
analysis precision:

1. First, the analysis records the type of an abstract object when this type is
available at the allocation site. This is the case with stack allocations, global
variables, and calls to C++’s new() heap allocation routine.

2. In cases where the type is not available (as in a call to malloc()), the analysis
deviates from the allocation-site abstraction and creates multiple abstract
objects per allocation site: one for every type that the object could have.
Thus, each abstract object of type T now represents the set of all concrete
objects of type T allocated at this site. To determine the possible types
for a given allocation site, the analysis creates a special type-less object and
records the cast instructions it flows to (i.e., the types it is cast to), using the
existing points-to analysis. This is similar to the use-based back-propagation
technique used in past work [17,19,27], in a completely different context—
handling Java reflection.

3. The field components of abstract objects are represented as abstract objects
themselves, as long as their type can be determined. That is, an abstract
object SO of struct type S will trigger the creation of abstract object SO.fi,
for each field fi in S. (The aforementioned special objects trigger no such
field component creation, since they are typeless.) Thus, the recursive cre-



ation of subobjects is bounded by the type system, which does not allow the
declaration of types of infinite size.

4. Finally, the analysis treats array elements similarly to field components (i.e.,
by representing them as distinct abstract objects, if we can determine their
type), as long as their respective indices statically appear in the source code.
That is, an abstract object AO of array type [T×N] will trigger the creation of
abstract object AO[c], if the constant c is used to index into type [T×N]. The
object AO[*] is also created, to account for indexing at unknown (variable)
indices.

The last point offers some form of array-sensitivity as well and is crucial for
analyzing C++ code, lowered to an intermediate representation such as LLVM
bitcode, in which all the object-oriented features have been translated away. To
be able to resolve virtual calls, an analysis must precisely reason about the exact
v-table index that a variable may point to, and the method that such an index
may itself point-to. That is, a precise analysis should not merge the points-to
sets of distinct indices of v-tables.

We offer an implementation of our approach over the full LLVM bitcode
intermediate language, in the form of a new static analysis tool, cclyzer1. We
show that our approach yields much higher precision than past analyses, allowing
accurate distinctions between subobjects, v-table entries, array components, and
more. Especially for C++ programs, this precision is invaluable for a realistic
analysis. Compared to the state-of-the-art past approach, our techniques exhibit
substantially better precision along multiple metrics and realistic benchmarks
(e.g., 40+% more variables with a single points-to target).

3 More Sound Static Handling of Java Reflection

Moving to higher-level languages, like Java, we note that essential structural
information is often lost in Java programs too, yet for different reasons. A source
of analysis imprecision, especially in determining the types of abstract objects
constructed by the analysis, lies in the use of Java’s reflection mechanism: the
ability to inspect and dynamically retrieve classes, methods, attributes, etc. at
runtime.

By using the Reflection API, Java programs can encompass dynamic be-
havior. However, statically reasoning about the behavior of software that uses
reflection can be especially cumbersome. Unfortunately, reflection is ubiquitous
in large Java programs. When a Java program accesses a class by supplying its
name as a run-time string, via the Class.forName library call, the static anal-
ysis has very few available courses of action: It needs to either conservatively
over-approximate (e.g., assume that any class can be accessed, possibly limiting
the set later, after the returned object is used), or to perform a string analysis
that will allow it to infer the contents of the forName string argument. Both

1 cclyzer is publicly available at https://github.com/plast-lab/cclyzer
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options can be detrimental to the scalability of the analysis: the conservative
over-approximation may never become constrained enough by further instruc-
tions to be feasible in practice; precise string analysis is impractical for programs
of realistic size. It is telling that no practical Java program analysis framework
in existence handles reflection soundly [18], although other language features are
modeled soundly.2

Full soundness is not practically achievable, but it can still be approximated
for the well-behaved reflection patterns encountered in regular, non-adversarial
programs. Therefore, it makes sense to treat soundness as a continuous quan-
tity: something to improve on, even though we cannot perfectly reach. To avoid
confusion, we use the term empirical soundness for the quantification of how
much of the dynamic behavior the static analysis covers. Computable metrics of
empirical soundness can help quantify how close an analysis is to the fully sound
result. Based on such metrics, one can make comparisons (e.g., “more sound”)
to describe soundness improvements.

The second challenge of handling reflection in a static analysis is scalability.
The online documentation of the IBM Wala library [10] concisely summarizes
the current state of the practice, for points-to analysis in the Java setting.

Reflection usage and the size of modern libraries/frameworks make it
very difficult to scale flow-insensitive points-to analysis to modern Java
programs. For example, with default settings, Wala’s pointer analyses
cannot handle any program linked against the Java 6 standard libraries,
due to extensive reflection in the libraries.

The same caveats routinely appear in the research literature. Multiple published
points-to analysis papers analyze well-known benchmarks with reflection dis-
abled [28,16,1,2].

A representative quote [28] illustrates:

Hsqldb and jython could not be analyzed with reflection analysis enabled
[...] —hsqldb cannot even be analyzed context-insensitively and jython
cannot even be analyzed with the 1obj analysis. This is due to vast im-
precision introduced when reflection methods are not filtered in any way
by constant strings (for classes, fields, or methods) and the analysis in-
fers a large number of reflection objects to flow to several variables. [...]
For these two applications, our analysis has reflection reasoning disabled.
Since hsqldb in the DaCapo benchmark code has its main functionality
called via reflection, we had to configure its entry point manually.

We describe an approach for handling reflection with improved empirical sound-
ness (as measured against prior approaches and dynamic information), again, in
the context of a points-to analysis. Our approach is based on the combination of
string-flow and points-to analysis from past literature augmented with (a) sub-
string analysis and modeling of partial string flow through string builder classes;

2 In our context, sound = over-approximate, i.e., guaranteeing that all possible be-
haviors of reflection operations are modeled.



(b) new techniques for analyzing reflective entities based on information avail-
able at their use-sites. In experimental comparisons with prior approaches, we
demonstrate a combination of both improved soundness (recovering the majority
of missing call-graph edges) and increased performance. Our approach requires
no manual configuration and achieves significantly higher empirical soundness
without sacrificing scalability, for realistic benchmarks and libraries (DaCapo
Bach and Java 7).

In experimental comparisons with the recent Elf system [17] (itself improv-
ing over the reflection analysis of the Doop framework [7]), our algorithm dis-
covers most of the call-graph edges missing (relative to a dynamic analysis) from
Elf’s reflection analysis. This improvement in empirical soundness is accompa-
nied by increased performance relative to Elf, demonstrating that near-sound
handling of reflection is often practically possible. Concretely, our work for re-
flection:

· introduces key techniques in static reflection handling that contribute greatly
to empirical soundness. The techniques generalize past work from an intra-
procedural to an inter-procedural setting and combine it with a string analysis;

· shows how scalability can be addressed with appropriate tuning of the above
generalized techniques;

· thoroughly quantifies the empirical soundness of a static points-to analysis,
compared to past approaches and to a dynamic analysis;

· is implemented and evaluated on top of an existing open framework (Doop [7]).

4 Class Hierarchy Complementation for Java

Whole-program static analysis is essential for clients that require high-precision
and a deeper understanding of program behavior. Modern applications of pro-
gram analysis, such as large scale refactoring tools [9], race and deadlock detec-
tors [22], and security vulnerability detectors [20,11], are virtually inconceivable
without whole-program analysis.

For whole-program analysis to become truly practical, however, it needs to
overcome several real-world challenges. One of the somewhat surprising real-
world observations is that whole-program analysis requires the availability of
much more than the “whole program”. The analysis needs an overapproxima-
tion of what constitutes the program. Furthermore, this overapproximation is
not merely what the analysis computes to be the “whole program” after it has
completed executing. Instead, the overapproximation needs to be as conservative
as required by any intermediate step of the analysis, which has not yet been able
to tell, for instance, that some method is never called.

Consider the example of trying to analyze a program P that uses a third-
party library L. Program P will likely only need small parts of L. However, other,
entirely separate, parts of L may make use of a second library, L′. It is typically
not possible to analyze P with a whole program analysis framework without
also supplying the code not just for L but also for L′, which is an unreasonable
burden. In modern languages and runtime systems, L′ is usually not necessary in



order to either compile P or run it under any input. The problem is exacerbated
in the current era of large-scale library reuse. In fact, it is often the case that
the user is not even aware of the existence of L′ until trying to analyze P .

Our research consists precisely of addressing such need in full generality.
Given a set of Java class and interface definitions, in bytecode form, we compute
a “program complement”, i.e., skeletal versions of any referenced missing classes
and interfaces so that the combined result constitutes verifiable Java bytecode.

To see why the problem has interesting depth and complexity, consider a
simple fragment of Java bytecode and the constraints it induces. Our convention
here is that single-letter class names at the lower end of the alphabet (A, B, ...)
correspond to known types, while class names at the high end of the alphabet
(X, Y, Z) denote phantom types. We present bytecode in a slightly condensed
form, to make clear what method names or type names are referenced in every
instruction.

public void foo(X, Y)

0: aload_2 // load on stack 2nd argument (of type Y)

1: aload_1 // load on stack 1st argument (of type X)

2: invokevirtual X.bar:(LA;)LZ; // method 'Z bar(A)' in X

3: invokevirtual B.baz:()V; // method 'void baz()' in B

...

Although the above fragment is merely four bytecode instructions long, it
induces several interesting constraints for our phantom types X, Y, and Z:

– X has to support a method bar accepting an argument of type A and returning
a value of type Z.

– Y has to be a subtype of A, since an actual argument of declared type Y is
passed to bar, which has a formal parameter of type A. This constraint also
means that if A is known to be a class (and not an interface) then Y is also a
class.

– Z has to be a subtype of B, since a method of B is invoked on an object of
declared type Z (returned on top of the stack by the earlier invocation).

Our goal is to satisfy all such constraints and generate definitions of phantom
types X, Y, and Z that are compatible with the bytecode that is available to
the tool (i.e., exists in known classes). Compatibility with existing bytecode is
defined as satisfying the requirements of the Java verifier, which concern type
well-formedness.

Note that such definitions will contain essential parts of missing structural
information for the phantom types: method and field members, as well as super-
types. Any subsequent static analysis that will operate on the types produced by
complementation will create abstract objects that are much closer, in structure,
to reality.

Of these constraints, the hardest to satisfy are those involving subtyping.
Constraints on members (e.g., X has to contain a “Z bar(A)”) are easy to sat-
isfy by just adding type-correct dummy members to the generated classes. This



means that the core of the general program complementation problem is solving
the class hierarchy complementation problem: given a partial type hierarchy and
a set of subtyping constraints, compute a complete type hierarchy that satisfies
the subtyping constraints without changing the direct parents of known types.

Solving the hierarchy complementation problem, constitutes the main novelty
of our approach. The problem appears to be fundamental, and even of a certain
interest in purely graph-theoretic terms. For a representative special case, con-
sider an object-oriented language with multiple inheritance (or, equivalently, an
interface-only hierarchy in Java or C#). A partial hierarchy, augmented with
constraints, can be represented as a graph, as shown in Figure 1a. The known
part of the hierarchy is shown as double circles and solid edges. Unknown (i.e.,
missing) classes are shown as single circles. Dashed edges represent subtyping
constraints, i.e., indirect subtyping relations that have to hold in the resulting
hierarchy. In graph-theoretic terms, a dashed edge means that there is a path
in the solution between the two endpoints. For instance, the dashed edge from
C to D in Figure 1a means that the unknown part of the class hierarchy has a
path from C to D. This path cannot be a direct edge from C to D, however: C
is a known class, so the set of its supertypes is fixed.
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(a) Constraint Graph

A

B

D

E C

FG

(b) Solution

Fig. 1: Example of constraints in a multiple inheritance setting. Double-circles
signify known classes, single circles signify unknown classes. Solid edges (“known
edges”) signify direct subtyping, dashed edges signify transitive subtyping.



In order to solve the above problem instance, we need to compute a directed
acyclic graph (DAG) over the same nodes,3 so that it preserves all known nodes
and edges, and adds edges only to unknown nodes so that all dashed-edge con-
straints are satisfied. That is, the solution will not contain dashed edges (indirect
subtyping relationships), but every dashed edge in the input will have a matching
directed path in the solution graph. Figure 1b shows one such possible solution.
As can be seen, solving the constraints (or determining that they are unsatisfi-
able) is not trivial. In this example, any solution has to include an edge from B
to E, for reasons that are not immediately apparent. Accordingly, if we change
the input of Figure 1a to include an edge from E to B, then the constraints
are not satisfiable—any attempted solution introduces a cycle. The essence of
the algorithmic difficulty of the problem (compared to, say, a simple topolog-
ical sort) is that we cannot add extra direct parents to known classes A and
C—any subtyping constraints over these types have to be satisfied via existing
parent types. This corresponds directly to our high-level program requirement:
we want to compute definitions for the missing types only, without changing ex-
isting code. For a language with single inheritance, the problem is similar, with
one difference: the solution needs to be a tree instead of a DAG. (Of course, the
input in Figure 1a already violates the tree property since it contains known
nodes with multiple known parents.)

We provide algorithms to solve the hierarchy complementation problem in
the single inheritance and multiple inheritance settings. We also show that the
problem in a language such as Java, with single inheritance but multiple subtyp-
ing and distinguished class vs. interface types, can be decomposed into separate
single- and multiple-subtyping instances. We implement our algorithms in a tool,
JPhantom,4 which complements partial Java bytecode programs so that the re-
sult is guaranteed to satisfy the Java verifier requirements. In a sense, JPhan-
tom aims to recover structural information for phantom classes, via inference,
by tracking their use in existing code. JPhantom is highly scalable and runs in
mere seconds even for large input applications and complex constraints (with a
maximum of 14s for a 19MB binary).

5 Conclusions

To summarize, we advocate that there are many opportunities in recovering
implicit structural information about memory that can improve static analysis
of programs, but require complex inference that takes advantage of indirect uses
of types. We have examined three different scenarios to test and evaluate our
thesis, regarding generic C/C++ programs, and Java programs that either use
reflection or are missing parts of their code. In all cases, we where able to improve
static analysis, by recovering memory structure that was not previously evident.

3 Inventing extra nodes does not contribute to a solution in this problem.
4 JPhantom is available online at https://github.com/gbalats/jphantom

https://github.com/gbalats/jphantom


6 Publications

The contents of this doctoral dissertation are based on the following published
papers:

– Structure-Sensitive Points-To Analysis for C and C++ [5]
– More Sound Static Handling of Java Reflection [27]
– Class Hierarchy Complementation: Soundly Completing a Partial Type Graph [4]
– Pointer Analysis [26]
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